基本事項の簡単な復習力学

1. (1) $v = \frac{\Delta x}{\Delta t}$ …(答) 速度は、単位時間あたりの変位で、 Δt を小さくすれば瞬間の速度となる。正

確には、変位も速度もベクトルなので $\vec{v} = \frac{\vec{\Delta x}}{\Delta t}$

(2) $a = \frac{\Delta v}{\Delta t}$ …(答) 加速度は、単位時間あたりの変位で、 Δt を小さくすれば瞬間の加速度となる。

正確には、速度も加速度もベクトルなので $\vec{a} = \frac{\vec{\Delta v}}{\Delta t}$

(3) $v = v_0 + at$ (4) $x = v_0 t + \frac{1}{2} a t^2$ (5) $v^2 - v_0^2 = 2ax$ (6) $\vec{u} = \overrightarrow{v_B} - \overrightarrow{v_A}$

(7) v = gt (8) $y = \frac{1}{2}gt^2$ (9) $v^2 = 2gy$ (10) $v = v_0 - gt$ (11) $y = v_0 t - \frac{1}{2}gt^2$

(12) $v^2 - v_0^2 = -2gy$ (13) $v_x = v_0$ (14) $v_y = gt$ (15) $x = v_0t$ (16) $y = \frac{1}{2}gt^2$

(17) $v_y^2 = 2gy$ (18) $v_0 \cos \theta$ (19) $v_0 \sin \theta$ (20) $v_x = v_0 \cos \theta$

(21) $v_y = v_0 \sin \theta - gt$ (22) $x = v_0 \cos \theta \cdot t$ (23) $y = v_0 \sin \theta \cdot t - \frac{1}{2}gt^2$

(24) $v^2 - (v_0 \sin \theta)^2 = -2gy$ (25) $v = \sqrt{v_x^2 + v_y^2}$

(26)「何に働く,何からの力」を意識すること (27) mg (28) kx (29) 静止摩擦

(30) 動摩擦 (31) $F_0 = \mu N$ (32) 逆向き (33) $F' = \mu' N$ (34) $P = P_0 + \rho gh$

(35) ρVg (36) 静止か等速直線運動(速度が変化しない)

(37) 合力が 0 (力の和が 0) (38) $\vec{ma} = \vec{F}$ (39) \vec{B} に働く \vec{A} からの力 (40) 同じ (41)逆

(42) 大きさが無視できないが、変形しない物体 (43) $Fl\sin\theta$

(44) 力がつりあっている (45) 任意の点のまわりのモーメントの和が 0

(46) $x_G = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$ (47) $W = FS \cos \theta$ (48) -mgh (49) mgh

(50) 単位時間あたりの仕事 (51) $P = \frac{W}{t}$ (52) P = Fv (53) $K = \frac{1}{2}mv^2$

(54) 物体がされた仕事 (55) U = mgh (56) U = -mgh (57) $U = \frac{1}{2}kx^2$

(58) 運動 (59) 保存力による位置 (60) 保存力以外の力が仕事をしないとき

(61) 保存力以外の力がした仕事 (62) mv (63) mv (64) 速度と同じ向き

(65) \vec{F}_t (66) F_t (67) 力の向きと同じ

(68) 物体の運動量の変化 = 物体に与えられた力積の和

(69) 内力(体系内の物体同士で働く力)のみが働くとき

(70) v'=ev (71) $e=-\frac{v'_A-v'_B}{v_A-v_B}$ (72) e=1 (73) 力学的エネルギー

(74) e < 1 (75) 完全非弾性衝突 (76) 衝突面に平行な成分は変化しない。

(77) 衝突面に垂直な成分は e 倍になる。 (78) $v_G = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$

(79) 静止または等速直線運動(速度が変化しない)

(80) 加速度運動する観測者から見たとき (81) 観測者の加速度と逆向き (82) ma

(83)
$$v = r\omega$$
 (84) $T = \frac{2\pi r}{v}$ (85) $n = \frac{1}{T}$ (86) 円の中心方向 (87) $r\omega^2$ (88) $\frac{v^2}{r}$

(89) 円の中心方向 (90) 向心力 (91) $mr\omega^2$ もしくは $\frac{mv^2}{r}$ (92) 半径方向外向き

(93) 遠心力 (94)
$$mr\omega^2$$
 (95) $\frac{mv^2}{r}$ (96) 遠心力を含んでつりあい (97) $\frac{Gm_1m_2}{r^2}$

(98)
$$\frac{GM}{R^2}$$
 (99) $-\frac{GMm}{r}$ (100) 焦点 (101) だ円 (102) 面積速度 (103) 2 乗

(104) 長半径 (105) 3 乗 (106)
$$\frac{1}{2}rv\sin\theta$$
 (107) $\frac{1}{2}r_1v_1 = \frac{1}{2}r_2v_2$

(108)
$$\frac{1}{2}mv_1^2 - \frac{GMm}{r_1} = \frac{1}{2}mv_2^2 - \frac{GMm}{r_2}$$
 (109) $x = A\sin(\omega t + \alpha)$ (110) $v = A\omega\cos(\omega t + \alpha)$

(111)
$$a = -A\omega^2 \sin(\omega t + \alpha)$$
 (112) つりあって(合力が 0) (113) $\upsilon_0 = A\omega$ (114) 0

(115) 中心 (116) 端 (117)
$$a = -\omega^2 x$$
 (118) $f = -Kx$ (119) 復元力 (120) $\omega = \sqrt{\frac{K}{m}}$

$$(121) \quad T = 2\pi \sqrt{\frac{m}{K}}$$

電磁気

(1)
$$F = \frac{kq_1q_2}{r^2}$$
 (2) 斥力 (3) 引力 (4) $F = qE$ (ベクトルなので $\vec{F} = q\vec{E}$) (5) 電場の方向

(6)電場と反対方向 (7)
$$E = \frac{kq}{r^2}$$
 (8) 点電荷と逆の方向 (9) 点電荷の方向 (10) $W = qV$

(11)
$$V = \frac{kq}{r}$$
 (12) $V = Ed$ (13) 電場 (14) 電場の大きさ (15) $4\pi kq$ (16) 直交

(17) 大きい (18) 表面 (19) 0 (20) 等しい (21) 分極 (22)弱めよう (23)
$$\frac{\varepsilon S}{d}$$

(24)
$$Q = CV$$
 (25) $U = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{Q^2}{2C}$ (26) $\varepsilon = \varepsilon_r \varepsilon_0$ (27) $E = \frac{V}{d}$ (28) $E = \frac{Q}{\varepsilon S}$

(29)
$$f = \frac{Q^2}{2\varepsilon S}$$
 (30) $f = \frac{1}{2}QE$ (31) $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$ (32) $C = C_1 + C_2$ (33) $I = \frac{q}{t}$

(34)
$$I = \frac{V}{R}$$
 (35) $R = \rho \frac{l}{S}$ (36,37,38) $P = IV = RI^2 = \frac{V^2}{R}$ (39) $W = Pt$

(40) 流れ込む電流の和=流れ出す電流の和 (41) 起電力の和=電圧降下の和

(42)
$$V = E - rI$$
 (43) 並列 (44) 分流器 (45) 直列 (46) 倍率器 (47) $R_X = \frac{R_2 R_3}{R_1}$

(48) a→b (49) 0 (50) b (51) a (52)
$$F = \frac{k_m m_1 m_2}{r^2}$$
 (53) 斥力 (54) 引力

(55)
$$F=mH$$
 (ベクトルなので $\overrightarrow{F}=m\overrightarrow{H}$) (56)磁場場の方向 (57)磁場と反対方向

(58)
$$H = \frac{I}{2\pi r}$$
 (59) 電流 (60) 磁場 (61) $H = \frac{NI}{2r}$ (62) 磁場 (63) 電流 (64) 単位長さあた

(65)
$$H=nI$$
 (66) $B=\mu H$ (本当はベクトルなので $\vec{B}=\mu \vec{H}$) (67) $\Phi=BS$

(68)
$$F = BIL \sin \theta$$
 (69) $F = BIL$ (70) 力 (71) 磁場 (72) 電流 (73) $f = qvB \sin \theta$

(74) 反対向き (75)
$$f = qvB$$
 (76) $V = -\frac{\Delta \Phi}{\Delta t}$ (巻き数 N をかける) (77) $|V| = \left|\frac{\Delta \Phi}{\Delta t}\right|$

(78)
$$V = vBl \sin \theta$$
 (79) $V = vBl$ (80) 速度 (81) 磁場 (82) 起電力 (83) $V_2 = -M \frac{\Delta I_1}{\Delta t}$

(84) 相互インダクタンス (85)
$$V = -L \frac{\Delta I}{\Delta t}$$
 (86) 相互インダクタンス (87) 急に不連続に変化しない。

(88)
$$\frac{1}{2}LI^2$$
 (89) $f = \frac{1}{T}$ (90) $\omega = \frac{2\pi}{T}$ (91) $V_e = \frac{V_0}{\sqrt{2}}$ (92) $I_e = \frac{I_0}{\sqrt{2}}$

(93)
$$\overline{P} = I_e V_e$$
 (94) $X_L = \omega L$ (95) $\frac{\pi}{2}$ 遅れる (96) $X_C = \frac{1}{\omega C}$ (97) $\frac{\pi}{2}$ 進む

(98)
$$\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 (99) $\overline{P} = I_e V_e \cos \varphi$ (100) $f = \frac{1}{2\pi\sqrt{LC}}$ (101) $f = \frac{1}{2\pi\sqrt{LC}}$

(102) $N_1: N_2$ (103) I_2V_2

熱力学

(1)
$$mc$$
 (2) $C\Delta T$ (3) $\frac{PV}{T}$ (4) $PV = nRT$ (5) $\frac{3RT}{2N_A}$ (6) $\frac{3}{2}nRT$

(7)
$$\frac{3}{2}nR\Delta T$$
 (8) $nC_V\Delta T$ (9) R (10) $C_V = \frac{3}{2}R$ (11) $C_P = \frac{5}{2}R$ (12) $Q = \Delta U + W$

(13) 0 (14)
$$Q = \Delta U$$
 (15) $Q = nC_{\nu}\Delta T$ (16) $P\Delta V$ (17) $Q = \Delta U + P\Delta V$ (18) $Q = nC_{P}\Delta T$

(19) 0 (20)
$$Q = W$$
 (21) 0 (22) $\Delta U = -W$ (23) 上昇 (24) 下降 (25) $p\Delta V$

(26) グラフの面積 (27)
$$W = Q - \Delta U$$
 (28) $Q_{\text{IN}} - Q_{\text{OUT}}$ (29) $\frac{W}{Q_{IN}} = \frac{Q_{IN} - Q_{OUT}}{Q_{IN}}$

(30)
$$PV^{\gamma} = -\overline{z}$$
 (31) $\gamma = \frac{C_P}{C_V}$ (32) $\gamma = \frac{5}{3}$ (33) $TV^{\gamma-1} = -\overline{z}$